
Vrije Universiteit Amsterdam
Herbert Bos

software had no bugs?

2010
Security problems are caused by

–Software bugs, and

–Configuration bugs

Since 2016
Even if the software is perfect

–and well-configured

it is still vulnerable!

What does that mean for

formally verified systems?

Software

Exploitation:

2010

7

Bugs,

Bugs

Everywhere!

8

Software

Exploitation:

2010

`

Attacker

Exploits

Vulnerable

Software

9

Software

Exploitation:

2010

10

`

Attacker

Owns

Application

Software

Exploitation:

2010

Software

Exploitation:

2010

Attacker

Owns

System

11

Software Exploitation:

2010

Systems security problems caused by bugs
Software and configuration bugs

Weak security implementations

Impossible to write software without bugs
However, we can mitigate their impact

Many defenses proposed by industry and academia

12

Software

Exploitation:

2016

How to Find

Memory R/W

Primitives?

13

Software

Exploitation:

2016

Memory R:

Hw/Sw Side

Channels

14

Software

Exploitation:

2016

Memory W:

Hardware

Glitches

15

Software

Exploitation:

2016

Memory R/W:

Back to

Reliable

Exploits

16

Software

Exploitation:

2016

Memory R/W:

Back to

Reliable

Exploits

17

18

Software Exploitation:

2016

Even if the software is perfect...
...with no bugs, well-configured, and latest defenses

...it is still vulnerable!

Attackers abuse properties of modern hw

and sw for reliable exploitation

We’ll look at 3 examples (browsers, clouds)

with 3 properties (dedup, Rowhammer,

speculation)

19

EXAMPLE 1

Meltdown/Spectre

20

Meltdown & Spectre
The Bugs That Shook The World

Herbert Bos

Vrije Universiteit Amsterdam

skip

EXAMPLE 2

Bug-free Exploitation in Browsers

76

Dedup Est Machina

Published at IEEE S&P 2016
with Erik, Kaveh, Cristiano

Won Pwnie Award at Black HAT 2016

“Most
Innovative

Research”

Exploit of Microsoft Edge browser on

Windows 10 from malicious JavaScript
...without relying on a single software bug

77

Dedup Est Machina

78

Memory deduplication

(software side channel)

Dedup Est Machina

79

Memory deduplication

(software side channel)

+

Rowhammer

(hardware glitch)

Dedup Est Machina

80

Memory deduplication

(software side channel)

+

Rowhammer

(hardware glitch)

Exploit MS Edge without software bugs

(from JavaScript)

Dedup Est Machina

81

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

82

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

83

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

Dedup Est Machina:

Overview

84

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

85

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

86

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

87

A strategy to reduce physical memory usage

Removes duplication in physical memory

Common in virtualization environments

Enabled by default on Windows
Windows 8.1

Windows 10

Memory Deduplication

88

Memory Deduplication:
Mechanics

89

Memory Deduplication:
Mechanics

90

Memory Deduplication:
Mechanics

91

Memory Deduplication:
Mechanics

92

Memory Deduplication:
Mechanics

93

Memory Deduplication:
Mechanics

94

Memory Deduplication:
Mechanics

95

Memory Deduplication:
Mechanics

96

Memory Deduplication:

The Problem

97

Memory Deduplication:

The Problem

98

Memory Deduplication:
Timing Side Channel

99

Memory Deduplication:
Timing Side Channel

100

Memory Deduplication:
Timing Side Channel

101

Memory Deduplication:
Timing Side Channel

102

Memory Deduplication:
Timing Side Channel

103

Memory Deduplication:
Timing Side Channel

104

Memory Deduplication:
Timing Side Channel

105

Memory Deduplication:
Timing Side Channel

106

Memory Deduplication:

The Problem

107

Very coarse-grained. Still interesting?
Is user logged into bank website X?

Memory Deduplication:

Side-channel Leaks

108

Very coarse-grained. Still interesting?
Is user running software X?

Memory Deduplication:

Side-channel Leaks

Skype not running
109

Very coarse-grained. Still interesting?
Is user running software X?

Memory Deduplication:

Side-channel Leaks

Skype running
110

For software exploitation, 1 bit won’t really cut it

(e.g., need to leak 64-bit pointers for MS Edge)

“Can we generalize this to leaking

arbitrary data like randomized

pointers or passwords?”

Memory Deduplication:

Software Exploitation

111

Challenge 1:

The secret we want to leak does
not span an entire memory page

Dedup Est Machina:
Challenges

112

Turning a secret into a page

Dedup Est Machina:
Challenges

113

Turning a secret into a page

Dedup Est Machina:
Challenges

114

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Dedup Est Machina:
Challenges

115

Challenge 2:

The secret to leak has too much
entropy to leak it all at once

Primitive #1
Primitive #2
Primitive #3

Dedup Est Machina:
Challenges

116

Primitive #1: Alignment Probing

Dedup Est Machina:
Primitives

117

Primitive #1: Alignment Probing

Dedup Est Machina:
Primitives

118

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

121

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

122

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

123

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

124

JIT Function Epilogue in MS Edge

Dedup Est Machina:
Leaking Code Pointer (#1)

125

Memory deduplication

Leak randomized heap and code pointers

Dedup Est Machina:

Overview

126

Heap pointers are word aligned
Alignment probing won’t cut it, same for primitive #2

Time for primitive #3!

“How do we leak a heap pointer

if we can only leak the

secret all at once?”

Dedup Est Machina:

Leaking Heap Pointer

127

128

Only 23 people for

a 50% same-

birthday chance

You compare

everyone with

everyone else

→ Any match

suffices!

Dedup Est Machina:

Birthday Paradox

129

Dedup Est Machina:
Birthday Paradox

130

Dedup Est Machina:
Birthday Paradox

131

Primitive #3:
Birthday Heapspray

132

Primitive #3:
Birthday Heapspray

133

Primitive #3:
Birthday Heapspray

134

Primitive #3:
Birthday Heapspray

135

Primitive #3:
Birthday Heapspray

136

Primitive #3:
Birthday Heapspray

137

Primitive #3:
Birthday Heapspray

138

Primitive #3:
Birthday Heapspray

139

Primitive #3:
Birthday Heapspray

140

Primitive #3:
Birthday Heapspray

141

Primitive #3:
Birthday Heapspray

142

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

143

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

144

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

145

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

146

Creating Secret Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

147

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

148

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

149

Creating Probe Pages

Dedup Est Machina:
Leaking Heap Pointer (#3)

150

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

151

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

152

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

153

Birthday Heapspray

Dedup Est Machina:
Leaking Heap Pointer (#3)

154

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

Dedup Est Machina:

Overview

155

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

156

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

157

Memory deduplication

Leak randomized heap and code pointers

Create a fake JavaScript object

+

Rowhammer

Create a reference to our fake object

Dedup Est Machina:

Overview

158

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

159

Fake JavaScript Uint8Array

Dedup Est Machina:
Creating a Fake Object

160

Pointer Pivoting

Dedup Est Machina:
Creating a Fake Object

161

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

162

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

163

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

164

Rowhammer

Dedup Est Machina:
Referencing the Fake Object

165

Double-sided Rowhammer

Dedup Est Machina:
Referencing the Fake Object

166

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

170

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

171

Pointer Pivoting

Dedup Est Machina:
Referencing the Fake Object

172

Dedup Est

Machina:

Can One

Attack the

Full System?

173

Deduplication is enabled system-wide

We can leak secrets from other processes

Say arbitrarily long passwords

E.g., 30-byte password hashes in nginx

System-wide Rowhammer is more involved

We don’t “own” other processes’ physical memory

We’ll look at this in our next example

Dedup Est Machina:

System-wide Exploitation

174

We shared our MS Edge exploit with Microsoft

and they addressed it in MS-16-093, July 18th

(CVE-2016-3272) by temporarily disabling

memory deduplication on Windows 10

Disable it on legacy systems (Powershell):

Dedup Est Machina:

Impact

175

Only the beginning

New attack on phones
Can we trust billions of devices?

New attack on VMs
Can we trust the cloud?

EXAMPLE 3

Bug-free Exploitation on Phones

177

Published at CCS 2016

Unprivileged app gets root on Android phones

not a single software

Drammer

Winner of the Dutch Cyber Security

Research Paper Award, 2017

https://www.vusec.net/projects/drammer/

EXAMPLE 4

Bug-free Exploitation in Clouds

179

Published at USENIX Security 2016
with Ben, Kaveh, Erik, Herbert, and Bart (KU Leuven)

Much media attention

System-wide exploits in public KVM clouds
...without relying on a single software bug

Flip Feng Shui

180

Rowhammer

(hardware glitch)

Flip Feng Shui:

Overview

181

Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)

Flip Feng Shui:

Overview

182

Rowhammer

(hardware glitch)

+

Memory deduplication

(physical memory massaging primitive)

Cross-VM compromise in public Linux/KVM

clouds without software bugs

Flip Feng Shui:

Overview

183

KVM / Clouds

KSM: Kernel Same-page Merging

hypervisor

UbuntuUbuntu

A B C D

KVM / Clouds

KSM: Kernel Same-page Merging

hypervisor

UbuntuUbuntu

A B C D

hypervisor

UbuntuUbuntu

A B C D

hypervisor

UbuntuUbuntu

A B C D

hypervisor

UbuntuUbuntu

A B C D

hypervisor

UbuntuUbuntu

A B C D

hypervisor

UbuntuUbuntu

A B C D

Questions:

1. What can we flip to gain access?

2. What pages do we know?

hypervisor

UbuntuUbuntu

A B C D

ssh?

hypervisor

UbuntuUbuntu

A B C D

ssh?
Check .authorized_keys

hypervisor

UbuntuUbuntu

A B C D

ssh?
Check .authorized_keys

Now .authorized_keys is in

memory

Public keys are not secret

So we know what is in memory

Using dedup

We move it to a page

susceptible to rowhammer

A bit flips in key…

Makes a weak key

Easy to generate private key

 We do this in minutes!

Better still…

hypervisor

UbuntuUbuntu

A B C D

APT
sources.list: from which to install packages & updates

debian.org

ubuntu.com

Using dedup

We move sources.list to
page susceptible to rowhammer

Hammer Time!

A bit flips…

Now we install from
ubunvu.com

ucuntu.com

…

(which we own)

But fortunately, the packages are signed!

Notified:

Red Hat, Oracle, Xen, VMware, Debian, Ubuntu,

OpenSSH, GnuPG, hosting companies

Flip Feng Shui:

Impact

NCSC did all the

hard work, thanks!

GnuPG “included

hw bit flips in their

threat model”
206

“Can we just disable memory

deduplication and buy

better DRAM?”

Yes, you really should, but...

Mitigations

207

No dedup?

Need another memory massaging primitive

Check our DRAMMER paper ;)

Mitigations

208

CCS 2016

Better DRAM?

Not so fast

Rowhammer exploits fundamental DRAM properties

Discovered on DDR3, still there on DDR4

Despite targeted countermeasures

Originally on x86, we found flips on ARM

Mitigations

209

No dedup and no Rowhammer?

Other primitives will come along

Expect:

More hw/sw properties you didn’t know about

More side channels

More hardware glitches

A radical change in the way we think about

sys security and “reasonable” threat models

Mitigations

210

Flip Feng

Shui:

Is Physics

Part of Your

Threat Model

Yet?

211

Rethinking Systems

Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation

improvements, since releasing Edge one year ago,

there have been no zero day exploits targeting Edge”

212

Rethinking Systems

Security

Software security defenses

[Aug 4, 12:00] Microsoft: “Thanks to our mitigation

improvements, since releasing Edge one year ago,

there have been no zero day exploits targeting Edge”

[Aug 4, 17:00] VUSec: “Dedup Est Machina: One can

exploit the latest Microsoft Edge with all the defenses

up, even in absence of software/configuration bugs”

213

Rethinking Systems

Security

Formally verified systems

214

Rethinking Systems

Security

Formally verified systems

[Aug 10] VUSec: “Flip Feng Shui: Reliable

exploitation of bug-free software systems”
215

Software security defenses are getting better

But hw and sw are getting extremely complex

Potentially huge unexplored attack surface

Attackers can subvert even “perfect” software

Beyond side channels (but they play a role)

Conclusion

https://vusec.net 216

https://vusec.net

